

Molecular Crystals and Liquid Crystals

ISSN: 1542-1406 (Print) 1563-5287 (Online) Journal homepage: http://www.tandfonline.com/loi/gmcl20

Structural Analysis of Diiron Complex with Tris(p-tolyl)phosphine

Yu Tan, Qing Zou, Xu-Feng Liu, Xiao-Yong Yu, Ying-Xin Zhang & Xie Li

To cite this article: Yu Tan, Qing Zou, Xu-Feng Liu, Xiao-Yong Yu, Ying-Xin Zhang & Xie Li (2015) Structural Analysis of Diiron Complex with Tris(p-tolyl)phosphine, Molecular Crystals and Liquid Crystals, 623:1, 393-397, DOI: 10.1080/15421406.2015.1036513

To link to this article: http://dx.doi.org/10.1080/15421406.2015.1036513

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gmcl20

Mol. Cryst. Liq. Cryst., Vol. 623: pp. 393–397, 2015 Copyright © Taylor & Francis Group, LLC

ISSN: 1542-1406 print/1563-5287 online DOI: 10.1080/15421406.2015.1036513

Structural Analysis of Diiron Complex with Tris(p-tolyl)phosphine

YU TAN, QING ZOU, XU-FENG LIU,* XIAO-YONG YU, YING-XIN ZHANG, AND XIE LI

Department of Chemical Engineering, Center of Analysis and Testing, Ningbo University of Technology, Ningbo, China

The title complex was obtained by the reaction of $(\mu\text{-SCH}_2\text{CH}_2\text{C}+\mu)\text{Fe}_2(CO)_6$ with tris(p-tolyl)phosphine in the presence of the decarbonylating agent $Me_3NO\cdot 2H_2O$ in $CH_2Cl_2/MeCN$ solutions. The molecular structure was determined by X-ray diffraction analysis. The title complex contains a butterfly diiron dithiolate cluster with five terminal carbonyls and a tris(p-tolyl)phosphine. The phosphorus atom of tris(p-tolyl)phosphine occupies an apical position of the square-pyramidal coordination sphere of the Fe2 atom. The van der Waals' interactions stabilize the solid state in the crystal packing.

Keywords Carbonyl substitution; crystal structure; diiron dithiolate; synthesis

Introduction

Diiron dithiolate complexes have attracted much interest in recent years, largely due to their structures close to the active site of [FeFe]-hydrogenases. [1, 2] [FeFe]-hydrogenases are a class of natural enzymes that can catalyze the production and consumption of H₂ in several microorganisms [3]. During 1998 [4] and 1999 [5], crystal structures of the [FeFe]-hydrogenases revealed that the active site contains a butterfly [2Fe2S] cluster with one of its iron atoms connected to a cubane-like [4Fe4S] cluster *via* the sulfur of a cysteinyl ligand. While the [2Fe2S] cluster is a catalytic center, the [4Fe4S] cluster is responsible for the electron transfer. The bridging dithiolate was supposed to be propanedithiolate [6] or azadithiolate [7]. A great number of [FeFe]-hydrogenases model complexes have been prepared. [8–16] Herein, we now report the crystal structure of diiron dithiolate complex with tris(*p*-tolyl)phosphine related to the active site of [FeFe]-hydrogenases.

Experimental

X-ray Structure Determination

Single crystals of the title complex suitable for X-ray diffraction analysis were grown by slow evaporation of CH₂Cl₂/hexane solutions at 4°C. A single crystal of the title complex was mounted on a Rigaku MM-007 CCD diffractometer. Data were collected at

^{*}Address correspondence to Xu-Feng Liu, Department of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, China. E-mail: nkxfliu@126.com

394 Y. Tan et al.

Table 1. Crystal data and structure refinements details for the title complex

Empirical formula	$C_{29}H_{27}Fe_2O_5PS_2$	
Formula weight	662.30	
Temperature (K)	113(2)	
Wavelength (Å)	0.71073	
Crystal system	Monoclinic	
Space group	P2(1)/n	
a (Å)	14.032(3)	
b (Å)	12.637(3)	
c (Å)	16.761(3)	
α (°)	90	
eta (°)	107.53(3)	
γ ($^{\circ}$)	90	
$V(\mathring{A}^3)$	2,834.1(10)	
Z	4	
$D_{\rm calc}$ (gácm ⁻³)	1.552	
$\mu (\mathrm{mm}^{-1})$	1.266	
F(000)	1,360	
Crystal size (mm ³)	$0.20\times0.18\times0.12$	
$\theta_{\min}, \theta_{\max}$ (°)	2.05, 27.95	
Reflections collected/unique	28,527/6,788	
$R_{ m int}$	0.0397	
hkl range	$-18 \le h \le 18$	
	$-14 \le k \le 16$	
	$-20 \le l \le 22$	
Completeness to θ_{max} (%)	99.6	
Data/restraints/parameters	6,788/0/355	
Goodness of fit on F^2	1.057	
$R1/wR2 \ (I>2\sigma(I))$	0.0310/0.0724	
R1/wR2 (all data)	0.0388/0.0754	
Largest diff peak and hole/e $Å^{-3}$	0.375/-0.642	

113 K by using a graphite monochromator with Mo K α radiation ($\lambda = 0.71073$ Å) in the ω - ϕ scanning mode. Data collection, reduction and absorption correction were performed by *CRYSTALCLEAR* program [17]. The structure was solved by direct methods using the SHELXS-97 program [18] and refined by full-matrix least-squares techniques SHELXL-97 [19] on F^2 . Hydrogen atoms were located using the geometric method. Details of crystal data, data collections, and structure refinement are summarized in Table 1.

Results and Discussion

The synthetic procedures of the title complex were appeared in recent reported research paper [20]. The molecular structure of the title complex was characterized by X-ray diffraction analysis. While the ORTEP and packing views are shown in Figures 1 and 2, selected bond lengths and angles are presented in Table 2, respectively. The title complex crystallizes in monoclinic space group P2(1)/n with four molecules in the unit cell and one molecule in

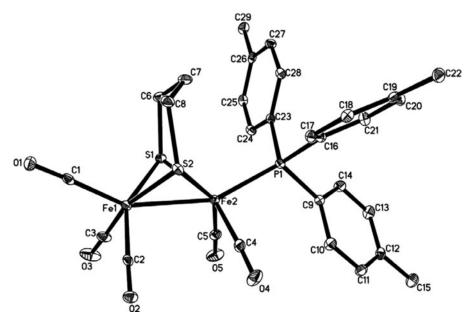


Figure 1. ORTEP view of the title complex with 30% probability level ellipsoids.

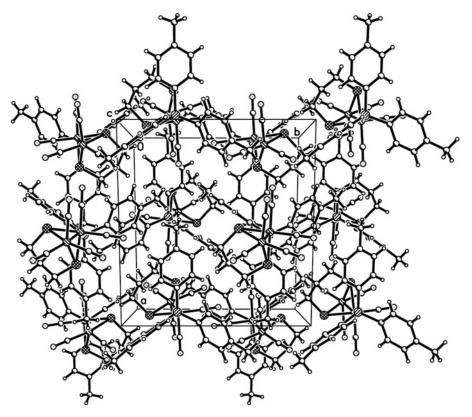


Figure 2. Crystal packing diagram of the title complex.

396 Y. Tan et al.

Table 2. Selected bond lengths (Å)	and angles (°) for the title complex
Table 2. Selected bolld lengths (A	and angles (, for the title complex

Fe(1)-C(2)	1.7956 (18)	Fe(1)-C(3)	1.800 (2)
Fe(1)-C(1)	1.8013 (19)	Fe(1)-S(2)	2.2589 (7)
Fe(1)-S(1)	2.2591 (7)	Fe(1)- $Fe(2)$	2.5156 (7)
Fe(2)-C(5)	1.765 (2)	Fe(2)-C(4)	1.7743 (19)
Fe(2)-P(1)	2.2380(7)	Fe(2)-S(1)	2.2582 (9)
Fe(2)-S(2)	2.2811 (6)	P(1)-C(9)	1.8414 (18)
S(2)-Fe(1)-S(1)	84.76 (2)	S(2)-Fe(1)-Fe(2)	56.77 (2)
S(1)-Fe(1)-Fe(2)	56.14(2)	P(1)-Fe(2)-S(1)	103.07 (3)
P(1)-Fe(2)-S(2)	113.538 (19)	S(1)-Fe(2)-S(2)	84.265 (19)
P(1)-Fe(2)-Fe(1)	155.297 (18)	S(1)-Fe(2)-Fe(1)	56.18 (3)
S(2)-Fe(2)-Fe(1)	55.930 (14)	Fe(2)-S(1)-Fe(1)	67.68 (2)

the asymmetric unit. As shown in Figure 1, the title complex consists of a $[Fe_2S_2]$ cluster with a propylene, five terminal carbonyls and a tris(p-tolyl)phosphine. The phosphorus atom of tris(p-tolyl)phosphine is located in an apical position of the square-pyramidal geometry of the neighboring Fe2 atom, very similar to other diiron complexes [21]. The diiron propanedithiolate cluster contains two fused six-membered rings, in which one six-membered ring Fe1S1C6C7C8S2 is a chair conformation and the other six-membered ring Fe2S1C6C7C8S2 is a boat conformation. The Fe1-Fe2 bond length [2.5156(7) Å] is slightly longer than the corresponding bond distance in its parent complex (μ -SCH₂CH₂CH₂S- μ)Fe₂(CO)₆ [2.5103(11) Å][22] and other all-carbonyl diiron complexes [23]. All carbon atoms of carbonyls are 1.76-1.80 Å apart from the iron atoms with some differences in apical and basal positions.

As shown in Figure 2, the crystal packing diagram reveals that the van der Waals' interactions stabilize the solid state.

Conclusion

In summary, the molecular structure of the title complex was confirmed by X-ray crystallography.

Acknowledgments

This work was supported by the Zhejiang Province Science and Technology Innovation Program (2014R422026) and the Scientific Research Program of Ningbo University of Technology (2014045). The author gratefully acknowledges the support of K.C. Wong Education Foundation.

Supplementary Material

CCDC 1034494 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

References

- [1] Liu, X. F., & Xiao, X. W. (2011). J. Organomet. Chem., 696, 2767.
- [2] Liu, X. F., & Gao, H. Q. (2014). J. Clust. Sci., 25, 367.
- [3] Li, C. G., Zhu, Y., Jiao, X. X., & Fu, X. Q. (2014). Polyhedron, 67, 416.
- [4] Peters, J. W., Lanzilotta, W. N., Lemon, B. J., & Seefeldt, L. C. (1998). Science, 282, 1853.
- [5] Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E., Fontecilla-Camps, J. C. (1999). Structure, 7, 13.
- [6] Li, C. G., Li, Y. F., Shang, J. Y., & Lou, T. J. (2014). Transition Met. Chem., 39, 373.
- [7] Liu X. F., Xiao, X. W., & Shen, L. J. (2011). J. Coord. Chem., 64, 1023.
- [8] Liu, X. F., Xiao, X. W., & Shen, L. J. (2011). Transition Met. Chem., 36, 465.
- [9] Liu, X. F., Jiang, Z. Q., & Jia, Z. J. (2012). Polyhedron, 33, 166.
- [10] Liu, X. F., & Gao, H. Q. (2014). J. Clust. Sci., 25, 495.
- [11] Li, C. G., Xue, F., Cui, M. J., & Shang, J. Y. (2014). J. Clust. Sci., 25, 1641.
- [12] Liu, X. F., & Yin, B. S. (2011). Z. Anorg. Allg. Chem., 637, 377.
- [13] Li, C. G., Xue, F., Cui, M. J., Shang, J. Y., & Lou, T. J. (2015). Transition Met. Chem., 40, 47.
- [14] Liu, X. F. (2011). Inorg. Chim. Acta, 378, 338.
- [15] Ghosh, S., Hogarth, G., Hollingsworth, N., Holt, K. B., Kabir, S. E., & Sanchez, B. E. (2014). Chem. Commun., 50, 945.
- [16] Liu X. F., & Yin, B. S. (2010). J. Coord. Chem., 63, 4061.
- [17] CRYSTALCLEAR 1.3.6. Rigaku and Rigaku/MSC. The Woodlands, TX, 2005.
- [18] Sheldrick, G. M. (1997). SHELXS97, A Program for Crystal Structure Solution; University of Göttingen: Germany.
- [19] Sheldrick, G. M. (1997). SHELXL97, A Program for Crystal Structure Refinement; University of Göttingen: Germany.
- [20] Zhao, P. H., Li, X. H., Liu, Y. F., & Liu, Y. Q. (2014). J. Coord. Chem., 67, 766.
- [21] Yen, T. H., Chu, K. T., Chiu, W. W., Chien, Y. C., Lee, G. H., & Chiang, M. H. (2013). Polyhedron, 64, 247.
- [22] Lyon, E. J., Georgakaki, I. P., Reibenspies, J. H., & Darensbourg, M. Y. (1999). Angew. Chem. Int. Ed., 38, 3178.
- [23] Cui, H. G., Wang, M., Dong, W. B., Duan, L. L., Li, P., & Sun, L. C. (2007). Polyhedron, 26, 904.